来自 科技 2021-06-22 09:01 的文章

日照信息港 七年终登Science封面:最强大脑皮层神经网络重建,揭示迄今哺乳动物最大神经线路图_脑研究所

十三 边策 鱼羊 发自 凹非寺

量子位 报道 | 公众号 QbitAI

大脑探索,今天更进一步。

最新Science杂志封面,发布了知名的德国马克斯·普朗克脑研究所的最新脑科学成果:

他们七年磨一剑,重建了非常复杂的大脑皮层神经网络,揭示了迄今为止最大哺乳动物神经线路图。

此前,人类只知大脑神经元的“样子”,现在,哺乳动物神经元如何连接——首次得到揭秘,并实现了更大量级的大脑皮层神经网络的重建。

并且AI的方法在其中发挥重要作用,研究者还说,这种突破还可能进一步为AI发展提供指导:

揭开生物神经网络连接秘密,或许可以进一步探明大脑高效计算原理。对于从生物神经网络中不断学习的人工神经网络大趋势里,这是第一个里程碑事件。

所以这究竟是一项怎样的突破性研究?

首次揭秘哺乳动物大脑神经元连接

哺乳动物的大脑皮层是一个非常复杂的神经过程网络:又长又薄,有分支,而且非常密集。

这种高堆积密度让皮层神经网络的重建工作具有相当大的挑战性。

以往的研究都停留在整体成像方面,但这一次,科学家们的重建工作真正深入到了神经元的连接

来自德国马克斯·普朗克脑研究所的研究人员,利用人工智能的方法,通过高空间分辨率重建了小鼠桶状皮层89个神经元的形态特征及其连接。

而且此次的研究所覆盖的区域,比早期的神经解剖映射尝试的方法大了整整两个数量级,是以前哺乳动物大脑皮层致密重建体积的300倍

通讯作者莫里茨·赫尔姆斯塔德特(Moritz Helmastaedter)介绍,这项研究发现,揭示了迄今为止最大的哺乳动物神经连接组

并且,通过对连接组回路的分析,这种生物智能方面的研究突破,很有可能迁移到AI领域,对人工智能产生重大影响。

莫里茨说:

映射大脑皮层中的神经网络是一场重大的科学冒险,我们希望揭开大脑作为一个计算机器高效运作的真相,它的模式与当今的AI如此不同。

除此之外,还有一些惊人的细节:连接组数据能够提取几何信息无法预测的抑制性和兴奋性神经元亚型

研究团队认为,将他们的方法应用到不同大脑区域、皮质层、发育时间点和物种的皮层组织,可以揭示自然进化是如何设计了生物的神经网络,以及神经网络的细粒度结构是如何成形的。

此外,连接组筛查可以揭示神经病和相关脑部疾病的回路表型,告诉我们某些重要的脑部疾病,在多大程度上受到连接组和神经回路的影响。

最强大脑皮层神经网络重建

哺乳动物的大脑由极为密集的神经元网络组成,包括神经细胞的轴突和树突。

这些神经细胞的堆叠密度非常之高,过去用光学成像方法只能分辨哺乳动物大脑皮层中神经细胞一小部分。

三维电子显微镜技术的发展,让研究人员绘制神经元结构的立体图像成为可能。

尽管这种显微技术的程序速度有了很大的提高,但过去从2D图像重建3D图像容易出错,导致对3D图像数据的分析始终受限。

现在,基于AI的方法发挥了重要作用。

研究者将人类的数据分析集成到神经连接的数据生成中,并用人机数据分析的效率促进了神经连接组的进展。

他们提升效率的方式如下:

1、提高自动分割质量;

2、分析自动分割中可能存在错误的位置,并将人工工作引导到这些位置;

3、通过帮助注释者来优化人员数据交互,实现内部并行数据的快速传输,并最大程度地减少注释程序查询之间的延迟。

经过优化后,将近100个学生注释者,可以在29秒内解决成千上万个重建问题。

最后,他们只用了大约4000个工作小时内即可在小鼠体感皮层的第4层中重建了总共2.7米的神经元细丝。

这项工作重建的大脑皮层数据比之前大300倍,效率提高了20倍

他们分析6979个突触前膜和3719个突触后膜之间的连接体,每个突触至少与10个突触相连,总共153,171个突触连接,然后分析了大脑皮层中的密集回路结构。

通过利用人机交互对神经元组织进行连接组分析,研究人员获得了迄今为止大脑皮层最大的连接组数据。

})();